#) JOLICH

FORSCHUNGSZENTRUM

OpenACC Performance
Optimization

04.10.2017| J. Kraus (NVIDIA)

#) JULICH

FORSCHUNGSZENTRUM

Outline

« Memory coalescing
« Loop optimizations

haft

Mitglied der Helmholtz-Gemeinsc

04.10.2017 OpenACC Performance Optimization 2

haft

Mitglied der Helmholtz-Gemeinsc

CSR sparse matrix storage

#) JULICH

FORSCHUNGSZENTRUM

O 1 2 3 4 O 1 2 3 4

o(-2(1 {0 |0 |O 01-2 |1

111 (211 [0 |0 1 1 [-2 |1

210 {1 |21 |0 2 1 -2 |1

3(0 {0 |1 [-2 |1 3 1 -2 |1

4 10 |0 |0 (1 [-2 4 1 |-2

row ptr|0 8 |11 13

col ptr |0 112 11 12 |3 (2 |3 (4 |3 |4

val 2 201 [1 211]2]1]1]=
04.10.2017 OpenACC Performance Optimization 3

Mitglied der Helmholtz-Gemeinschaft

#) JULICH

FORSCHUNGSZENTRUM

Sparse Matrix Vector Product (SpMV)

42 :#pragma acc parallel loop

43:for (int row=0; row<num rows; ++row)

44 :{
45:
46:
47 :
48:
49:
50:
51:
52:
53:}

y[row] = 0.0;

const int row start = row ptr[row];

const int row end = row ptr[row+l];

for (int col idx=row start; col idx<row end; ++col 1idx)

{
ylrow] += val[col idx] * x[col ptr[col idx] 1;

04.10.2017 OpenACC Performance Optimization 4

#) JULICH

FORSCHUNGSZENTRUM

SpMV on K80

pgcc -fast -acc -ta=tesla -Minfo=accel spmv.c -0 spmv
main:

36, Generating
copyin (row ptr[:num rows+l],col ptr[:num vals],val[:num vals],x[:num rows])

Generating copy (y[:num rows])
42, Accelerator kernel generated
Generating Tesla code
43, #pragma acc loop gang, vector (128) /* blockIdx.x threadIdx.x */
48, Complex loop carried dependence of y-> prevents parallelization
Loop carried reuse of y-> prevents parallelization

./ spmv

Runtime 0.148565 s.

Mitglied der Helmholtz-Gemeinschaft

04.10.2017 OpenACC Performance Optimization 5

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

% NVIDIA Visual Profiler

File View Window Run Help :

CEAEMGE - FRIEIE

& "NewSassion1 52 = B [Properties & = 85
\‘ns 0255 055 0.75s 1s 1255 158

Select or highlight a single interval to see properties

[=| Process "spmv" (31010
=] Thread 3273211840 ‘
-~ Driver AP|
L Profiling Overhead | |
=l [0] Tesla Kgo
[= Context 1 (CUDA)
57 MemGpy (HtoD)
57 MemGpy (DioH) I
=1 Compute I — —
L 5 100.0% main_42_gpu
=] Streams

- Stream 13

Analysis 82 [Detalls & Console " Settings X, B
[Analy g

{# Export PDF Rsport Eeaul

The guided analysis system walks you through the el
various analysis stages o help you understand the
optimization opportunities in your application. Cnos
you become familiar with the optimization process,
you can explore the individual analysis stages in an
unguided mode. When optimizing your application it
is important to fully utilize the compute and data
maovement capabilities of the GPU. To do this you
should lock at your application’s overall GPU usage
as well as the performance of individual kernels.

Iy, Examine GPU Usage

Determine your application's overall GPU usage. This analysis
timeline, =0 your will be run
once to collect it if it i notalready available

iiu Examine Individual Kemnels

Detarmine which kernels are the most performanca critical
and that have the most opportunity for impravement, This
analysis requires utilization data from every kernel, so your
application will be run onca to collect that data f it is not :‘

ied der Helmholtz-Gemeinschaft

04.10.2017 OpenACC Performance Optimization 6

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

% NVIDIA Visual Profiler

File View Window Run Help e
cEHEeEs% - waalFRIE2E
& "NewSassion1 52 = B [Properties & = 85
0s 0255 055 0.755 15 1.255 155
[=] Process "spmv" (31010) Select or highlight a single interval to see properties
=] Thread 3273211840
-~ Driver AP|

- Profiling Overhead
= [0] Tesla Kao
[=] Context 1 {CUDA)
L 5F MemGpy (HtoD)
=5 MemGpy (DtoH)
= Compue S
7 o0 man_42_gp S —— — —

=] Streams
s s] |

- Stream 13

5 Analysis 82 [Detalls & Console % T
(i Export PDF Report ET

& Low Memcpy/Compute Overlap [0 ns / 358 552 ms = (% |
The percentage of time when memcpy is being performed in parallel with compute is low. More...
& Low Kernel Concurrency [0 s / 626272 ms = 0% |

Theanaljiinmstinoh e sght indlonin paienial The percentage of time when two kemnels are being executed in parallel is low. Moare...

problems in how your appl 1is taking age of

the GP.lTI:S available compute nd dat§ moverr,em & Low Memcpy Overlap | 0 ns / & 238 ms = 0% |

capabiliies. You should examine the information

provided with each resull to determine if you can make The percentage of time when two memory copies are being performed in parallel is low. More...

changss to your application to increase GPU utilization r

- i Compute Utilization

Ly, Examine Indivicual Kemels I The device timeline shows an estimate of the amount of the total compute capacity being used by the kemnels executing on the device.

You can ako examine the performance of individual karneks to
&xpose additonal optimization opportunities

Mitglied der Helmholtz-Gemeinschaft

04.10.2017 OpenACC Performance Optimization 7

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

% NVIDIA Visual Profiler
File View Window Run Help

EFEEC R EEE
& "NewSassion1 52 = B [Properties & = 85

‘Us 0258 05s 0758 1s 1255 15s
\ i f i

[=| Process "spmv" (31010) Select or highlight a single interval to see properties
=] Thread 3273211840
~ Driver AP| | | L
- Profiling Overhead
=] [0] Tesla Ksa
[=] Context 1 {CUDA)
S MemGpy (HioD)
L SF MemGpy (DioH)

=1 Gompue I —— R —
7 10007 main_s2_gpu — e —

=] Streams

5 Analysis 82 [Detall: & Consale

Settings .. Bl

(i Export PDF Report LT

i Kernel Optimization Priorities

The following kernels are ordered by optimization importance based on execution time and achieved occupancy. Optimization of higher ranked kernels (those that
appear first in the list) is more likely to improve performance compared to lower ranked kernels.

The results on the right show your application’s kemels Rank | Description
ordered by potential for performance improve ment.
Starting with the kernels with the highest ranking, you
should select an entry from the table and then perform
kernel analysis to discover additional optimization
opportunities.

10C [10 kernel instances | main_42 gpu

i, Perform Kemal Analysis |
n

Sekct a karnel from the table at right or from t?—a timaline to
enable kernel analysis, This analysis requires detaild profiling
data. so your application will be run once to collect that data for
the kernel if it i not already avaiable

[, Perform Additional Analysis J

You can colkect additional information fo help identify kernels with
potential pe formance problems. After running this analysis, sskect
any of the new rasults at right fo highlight the individual kernels for
which the analysis applies.

ied der Helmholtz-Gemeinschaft

04.10.2017 OpenACC Performance Optimization 8

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

% NVIDIA Visual Profiler
File View Window Run Help
CEAEMGE - FRIEIE

& "NewSassion1 52 = B [Properties & = 85
0s 025s 05s 0.75s 15 1255 155
[=] Process "spmv" (31010) Select or highlight a single interval to see properties
=] Thread 3273211840
“ Driver AP| | | JUEl

- Profiling Overhead
= [0] Tesla Kao
[=] Context 1 {CUDA)
L 5F MemGpy (HtoD)
L SF MemGpy (DtoH)

= Compue S — A —
———

L 57 100.0% main_42_gpu [
=] Streams
- Siean 13 . ———
(Gl Analysis 82 [Detall: & Console T Seitings % =
Export PDF Report e -
i Kernel Performance Is Bound By Instruction And Memory Latency I
This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak parformance of "Tesla K80". These utilization levels indicate
that the performance of the kemel is most likely limited by the latency of arithmetic or memory operations. Achieved compute throughput and‘or memory
bandwidth below 605 of peak typically indicates latency issues.
The first step in analyzing an individual kernel is to = i
determing it the performance of the kernelis bounded TR
by computation, memory bandwidth, or instruction/ an%
memory latency. The results at right indicats that the
= perormance of kems! "main_42_gpu" is most liksly ARk,
_(CU limited by instruction and memary latency. 0%
s} - E
2 il Perform Latency Analysis .% L
qE) The most likely bottlenack to parformanca for this kernel s E L
[0} instruction and memory latency so you shoukd first perform 5 a0%
0] instruction and memory kiency analysis o determine how it is h
N limiting performance. 30%
= L]
o . 20%
-E [, Perform Compute Analysis 4 =
_ 10%
:‘E [, Perform Memory Bandwidth Analysis i
5 Compute and memory bandwidth are likely not the primary :| Function Unit {Arithme tic) Memary (Device) j
©
el
2
°©
=
=

04.10.2017 OpenACC Performance Optimization 9

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

% NVIDIA Visual Profiler

File View Window Run Help

CEHE Mg R E PR
& "NewSassion1 52 = B [Properties & = 85
\‘ns 025s 05s 0.75s 15 1255 158
[=] Process "spmv" (31010) Select or highlight a single interval to see properties
=] Thread 3273211840
“ Driver AP| | JUEl

- Profiling Overhead
= [0] Tesla Kao
[=] Context 1 {CUDA)
L 5F MemGpy (HtoD)
L SF MemGpy (DtoH)
=l Compue —— —
7 o0 man_42_gp s —— ——

=] Streams

- Swwan13 S —————

5 Analysis 82 [Detall: & Consale

Settings b BN
Result:

[y, Export POF Report

1x

& Achieved Occupancy Is Low

COccupancy is a measure of how many warps the kemnel has active on the GPU, relative to the maximum number of warps supported by the GPU. Theoretical
occupancy provides an upper bound while achieved cccupancy indicates the kernel's actual occupaney. The kemnel's achieved occupancy of 42.1% is
significantly lower than its theoretical cccupancy of 100%. Most likely this indicates that there is an imbalance in how the kernel's blocks are executing on the
SMs so that all SMs are not equally busy over the entire execution of the kemel. The following chart shows the utilization of each multiprecessor during
execution of the kemael.

Optimization: Make sure that all blocks are doing roughly the same amount of wark. If may also help to increase the number of blocks executed by the

“|| kemel. Moare..

Instruction and memory latency limit the performance
of a kernel when the GPU does not have enough work
to keep busy. The results at right indicate that the GPL
does not have enough work because differences in 100%
the execution ime of the kernel's blocks leads to poor
load balancing across the SMs.

0%

80%

iy, Examine Occupancy

60%

Occupancy i a measure of how many warps the kemel has
active on the GPU. relative to the maximum number of warps
suppaorted by the GPU. Theoretical occupancy provides an
upper bound whik achieved occupancy indicales the kernals
actual occupancy. For this kernel. examining occupancy may 30%
not be useful until you modify the kernel to bettar balanca the
blockexecution times across all Shs.

Utilization

ied der Helmholtz-Gemeinschaft

04.10.2017 OpenACC Performance Optimization 10

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

% NVIDIA Visual Profiler
Eie View Window Run Help |
BEHEEG% [(@2alFrEa2a

& "NewSassion1 52 = B [Properties & = 85

‘Us 0258 05s 0758 1s 1255 15s
\ i f i

[=| Process "spmv" (31010
= Thread 3273211840
~ Driver AP
- Profiling Overhead
=] [0] Tesla K80
[=] Context 1 {CUDA)
¥ MemGpy (HioD)
L SF MemGpy (DioH)

=l Compute N — N —
7 100.0% main_s2_gpu I — e —

Select or highlight a single interval to see properties

=] Streams
- Stean1s s I —
[Analysis £2 Detall: & Console T Saitings % =
[y, Export POF Report He_sult o
i Occupancy Is Not Limiting Kernel Performance (4]
The kemel's block size, register usage, and shared memory usage allow it to fully utilize all warps on the GPU. More..
Variahle Achieved Theoretical | Device Limit | Grid Size: [65535,1,1] (65535 blocks)Block Size: [128,1,1] (128 threads) |
Occupancy Per SM
Active Blocks 18 16 e
0 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 16
’ = ~| | |Active Warps 26.97 64 84 A i S
Instruction and memory latency limit the performance . 0 4 B 12 16 20 24 28 32 36 40 44 48 52 56 60 ©&4
of a kernel when the GPU does not have encugh work i 8 - N N
= to keep busy. The results at right indicate that the GPU AptiveTheeads 2048 048 o 255 512 768 1024 1280 1338 1792 2048
© does not have enough work because differences in s ./]
‘S the execution time of the kernel's blocks leads to poor G daitee 1 e o 15% 3084 A45% BYe 75% 0% 100%
aQ load balancing across the SMs. i
£ 2 Warps
(3] e "
aE) uly Examine Occupancy Threads/Block 128 1024 = - = —]
0 128 256 384 512 640 768 896 1024
(.'? Occupancy & a measure of how many wargs the kamel has T i —— :
i s/Blecl 32
g active on the GPU. relative to the maximum number of warps arp: o 2 4 3 Y {0 12 14 16 18 20 22 24 26 28 30 a2
=) supparted by the GPU. Theoretical occupancy provides an
< uppsr bound whie achieved ocoupancy indicales the kernels Block Limit 16 16 e ———
g actual occupancy. For this kernal, examining may o 1 2 8 4 5 6 ¥ 8 9 10 11 12 18 14 15 16
[0} not be usaful untilyou modify the kemnalto better baknce the Registers
T block sxecution times across all SHs.
=
g (= |Reﬂistersﬂhread 0 255 | — 1 | Ad]
el
o

04.10.2017 OpenACC Performance Optimization 11

ied der Helmholtz-Gemeinschaft

%

File View Window Run Help

SpMV on K80

NVIDIA Visual Profiler

TR e - [

& "NewSassion1 52

05s 0.75s 15

1255 15s

o

[=| Process "spmv" (31010
[=| Thread 3273211840
~ Driver AP
- Profiling Overhead
= [0] Tesla Kao
[=] Context 1 {CUDA)
L 5F MemGpy (HtoD)
=5 MemGpy (DtoH)
[=] Compute
= 5 100.0% main_42_gpu
[=] Streams
- Stream 13

5 Analysis 82 [Detall: & Consale

Settings

Export PDF Report

Occupancy i a measure of how many warps the kernel has
active on the GPU. relative to the maximum numker of warps
supported by the GPU. Theoretical occupancy provides an
upper baund while achieved occupancy indicates the kernels
actual occupancy. For this kernel, axamining oocupancy may
not be ussful until you modify the kernelto better baknce the
block execution times across all SMs.

| [y, Examine Stall Reasons I

When both achisved and theoretizal occupancy are high, the
stall reasons can provide insight into why latency is stillan
isue for the kernel For this karnel examining stalls may not
be useful until you modify the kernal to better balance the
block exacution times.

[Rerun Analvsis i

Result:

= Properties 2

Select or highlight a single interval to see properties

RISy S e ansnai,

Constant - A constant load is blocked due to a miss in the constants cache.
Instruction Fetch - The next assembly instruction has not yet been fetched.

Texture - The texture sub-system is fully utilized or has too many outstanding requests.

Synchronization - The warp is blocked at a __syncthreads() call.

memory

dependency

Stall Reasons

execution
dependency
instruction
fetch

not
sakcted
memary
throttie
constant

pip2

busy

other
synchroniztion

04.10.2017

OpenACC Performance Optimization

JULICH

FORSCHUNGSZENTRUM

12

#) JULICH

FORSCHUNGSZENTRUM

Disable usage of
texture cache to see

SPMV on K80 uncoaleseced

memaory aCCesses

pgcc -fast -acc -ta=tesla:cc30,lineinfo -Minfo=accel spmv.c -0 spmv
e ———

main: Better Profiling
36, Generating Information

copyin (row ptr[:num rows+l],col ptr[:num vals],val[:num vals],x[:num rows])
Generating copy (y[:num rows])
42, Accelerator kernel generated
Generating Tesla code
43, #pragma acc loop gang, vector (128) /* blockIdx.x threadIdx.x */
48, Complex loop carried dependence of y-> prevents parallelization
Loop carried reuse of y-> prevents parallelization

./ spmv

Runtime 0.177488 s.

Mitglied der Helmholtz-Gemeinschaft

04.10.2017 OpenACC Performance Optimization 13

ied der Helmholtz-Gemeinschaft

SpMV on K80

%

File View Window Run Help

NVIDIA Visual Profiler

Wy =y G -

& "NewSassion1 52

[=| Process "spmv" (313886)
= Thread 2686713792
~ Driver AP
- Profiling Overhead
= [0] Tesla Kao
[=] Context 1 {CUDA)
L 5F MemGpy (HtoD)
L SF MemGpy (DtoH)
[=] Compute
= 5 100.0% main_42_gpu
[=] Streams

- Stream 13

5 Analysis 32 [Detalls & Console

[y, Export POF Report

The first step in analyzing an individual kernel is to
determing it the performance of the kernelis bounded
by computation, memory bandwidth, o instruction/
memory latency. The results at right indicats that the
perormance of kemsl "main_42_gpu" is most liksly
limited by memory bandwidth.

Perform Memory Bandwidth Analysis

Tha most likely bottieneck to performance for this kernel is
memary bandwidth so you shoukd first parfarm memory
bandwidth analysis to detarmine how it i limiting perfarmanca

iy, Perform Compute Analysis I

[Perform Latency Analysis l

Compule and instruction and memory llency are fiely not
the primary performance bottienecks for this kernel. but you

Settings

= Properties 22 = 5

Select or highlight a single interval to see properties

Result:

i Kernel Performance Is Bound By Memory Bandwidth

instruction units within the multiprecessors.

Utilization

Zompute Memory (Load/Store Instruction Unit)

For device "Tesla K&0" the kemel's compute utilization is significantly lower than its memory utilization. These utilization levels indicate that the performance
of the kernel is most likely being limited by the memory system. For this kernel the limiting factor in the memory system is the bandwidth of the load/store

1*

I Memory operations

B controkfow operations

B Arithmetic operations

- Memory (Load/Store Instruction Unit)

04.10.2017

OpenACC Performance Optimization

JULICH

FORSCHUNGSZENTRUM

14

ied der Helmholtz-Gemeinschaft

SpMV on K80

%

File View Window Run Help

NVIDIA Visual Profiler

i
% "NewSassioni £

as

5% (R alfr k&

[=| Process "spmv" (31386)
[= Thread 2686713792
- Driver AP
- Profiling Overhz ad
= [0] Tesla Kao
[=| Conlext 1 (CUDA)
LSF MemGpy {HtoD)
L ¥ MemGpy (DioH)
[=] Compute
L 5F 100.0% main_42_gpu
[=] Streams
L Stream 13

i Analysis 82 [Details & Consols: T Settings

iy, Export PDF Report

Memary bandwidth limits the performance of a kernel
when one or more memaries in the GPU cannot provide
data atthe rate requssted by the kernel. The results at
right indicate thatthe kernel is limited by the bandwicdth
available to the device memory.

|4, Rerun Analysis

If you madify the kernalyou need to rerun your application to
update this analysis.

an
= B [Propetties & = E
055 15 155 25 255
Select or highlight a single interval to see properties
T I
.. [T
Result: =
=
& Global Memory Alignment and Access Pattern
Memory bandwicth is used most efficiently when each global memory load and store has proper alignment and access pattern.
Opfimization: Select each entry below to open the source code to a global load or store within the kernel with an inefficient alignment or access
paitern. For each load or store improve the alignment and access pattern of the memory access. More...
= Line/File |spmv.c - /homeb/zam/jkraus/workspace/dSC-GPU-Course/OpenACC/Performanc e-Optimization/exercises/Cltask0
47 Global Load L2 Transactions/Access = 5, Ideal Transactions/Access = 4 [1268844 L2 transactions for 253769 total executions | =
50 Global Load L2 Transacticns/Access = 32, Ideal Transactions/Access = 8 [105247013 L2 transactions for 3288976 total exscutions |
50 Global Load L2 Transactions/Access = 8.7, |deal Transactions/Access = 8 [28588163 L2 transactions for 3288976 total executions]
50 Global Load L2 Transactions/Access = 32, Ideal Transactions/Access = 4 [8040998 L2 transactions for 251287 total executions]
50 Global Load L2 Transactions/Access = 32, Ideal Transactions/Access = 8 [105247013 L2 transactions for 3288976 total executions |
50 Global Load L2 Transactions/Access = 32, Ideal Transactions/Access = 8 [8040998 L2 transacticns for 251287 total executions |
50 Global Load L2 Transactions/Access = 32, Ideal Transactions/Access = 4 [105247013 L2 transactions for 3288976 total executions |
50 Global Load L2 Transactions/Access = 9, |deal Transactions/Access = 8 [2261538 L2 transactions for 251287 total executions |
50 Global Load L2 Transactions/Access = 8.6, [deal Tr ions/Access = 8 | 36884 L2 transactions for 3288376 total executions]
50 Global Load L2 Transactiens/Access = 32, Ideal Transactions/Access = 4 [105247013 L2 transactions for 3288976 total exscutions |
&

04.10.2017

OpenACC Performance Optimization

JULICH

FORSCHUNGSZENTRUM

15

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

‘ NVIDIA Visual Profiler

File View Window Help

)
% "NewSession1 | spmv.c I8 = B [Properties &2 = e
ylrow] = 0.0; L
eonst int row_start = row_ptr[row];
const int row_snd = row_ptr[row+l]; Select or highlight a single interval to see properties
for (int col_idx = row_start; col_idx < row_end; ++col_idx)
{
=pMultiple markers at this line _lEI
- Global Load L2 Transactions/Access = 32, Ideal Transactions/Access = 4 | 8040999 L2 transactions for 251287 total exscutions | =
- Global Load L2 Transactions/Access = 8.7, Ideal Transactions/Access = 8 [28588163 L2 transactions for 3288976 total executions]
- Global Load L2 Transactions/Access = 32, Ideal Transactions/Access = 8 [105247013 L2 transactions for 3288976 total executions]|
- Global Load L2 Transactions/Access = 32, Ideal Transactions/Access = 8 | 8040938 L2 transactions for 251287 total exesutions]
- Global Load L2 Transastions/Access = 382, Ideal Transactions/Access = 4 | 105247013 L2 transactions for 3288976 total executions]
- Global Load L2 Transactions/Access = 8.6, Ideal Transactions/Access = 8 [28336884 L2 transactions for 3288976 total executions]
- Global Load L2 Transactions/Access = 9, Ideal Transactions/Access = 8 | 2261638 L2 transactions for 261287 total executions]
for (:Ln: row=0; row<num_rows; ++row) L
1 L=l
(K| 1]
[T Analysis 52 Details & Console Settings L =]

I, Export PDF Report Tl

L¥|

& Global Memory Alignment and Access Pattern

Memory bandwicth is used most efficiently when each global memory load and store has proper alignment and access pattern.

Optimization: Select each entry below to open the source code to a global load or store within the kernel with an inefficient alignment or access

paitern. For each load or store improve the alignment and access pattern of the memory access. More...
~ Line/File |spmv.c - /homeb/zam/jkraus/workspace/dSC-GPU-Course/OpenACC/Performanc e-Optimization/exercises/Cltask0

47 Global Load L2 Transactions/Access = 5, Ideal Transactions/Access = 4 [1268844 L2 transactions for 253769 total executions] =

Memery bandwidth limits the performance of a kernel

when one or more memaries in the GFU cannot provide

= data atthe rats requested by the kernsl. The results at 50 Global Load L2 Transactions/Access = 8.7, Ideal Transactions/Access = 8 [28588163 L2 transactions for 3288976 total executions]

B fight iNieate: it i errel co limisect by the oanEwidy 50 Global Load L2 Transactions/Access = 32, Ideal Transactions/Access = 4 [8040993 L2 transactions for 251287 total executions |

[+ available to the device memory.

g - 50 Global Load L2 Transactions/Access = 32, Ideal Transactions/Access = 8 [105247013 L2 transactions for 3288975 tolal executions |

E 4 Rerun Analysis 50 Global Load L2 Transactions/Access = 32, |deal Transactions/Access = 8 [8040998 L2 transactions for 251287 total executions]

8 It you modffy the karnel you need to rerun your application to 50 Global Load L2 Transactions/Access = 32, Ideal Transactions/Access = 4 [105247013 L2 transactions for 3288976 total executions |
update this analysis.

N 50 Global Load L2 Transactions/Access = 8, Ideal Transactions/Access = 8 [2261538 L2 transactions for 251287 total executions |

N

_8 50 Global Load L2 Transactions/Access = 8.6, [deal Tr i Access = 8 36884 L2 transactions for 3288376 total executions |

g 50 Global Load L2 Transacticns/Access = 32, Ideal Transactions/Access = 4 [105247013 L2 transactions for 3288976 total exscutions |

[

T

=

(0]

©

el

o

04.10.2017 OpenACC Performance Optimization 16

Mitglied der Helmholtz-Gemeinschaft

#) J0LICH

FORSCHUNGSZENTRUM

Memory Coalescing

« Coalesced access:

A group of 32 contiguous threads (,warp“) accessing
adjacent words

Few transactions and high utilization
 Uncoalesced access:

A warp of 32 threads accessing scattered words
Many transactions and low utilization

* For best performance threadldx.x should access

contiguously
(][]]][]
1] A N =

04.10.2017 Coalesced OpenACC Performance Optimization Yncoalesced 17

#))0LICH

FORSCHUNGSZENTRUM

OpenACC: 3 Levels of Parallelism

« Vector threads work
in lockstep
<€<—— Vector —> (SIMD/SIMT
Workers parallelism)

« Workers have 1 or
Gang more vectors

« Gangs have 1 or
more workers and
share resources
(such as a cache, the
SM, etc.)

Gang « Multiple gangs work
independently of
each other

<€<——— Vector —>

Workers

haft

Mitglied der Helmholtz-Gemeinsc

ization 18

Mitglied der Helmholtz-Gemeinschaft

#) J0LICH

FORSCHUNGSZENTRUM

CUDA Execution Model

Software Hardware
(I Threads are executed by scalar processors
Scalar
Thread Processor
Thread blocks are executed on multiprocessors
==
22222222 =55 Thread blocks do not migrate
|
.
Several concurrent thread blocks can reside on one
Tglr eaf Multiprocessor multiprocessor - limited by multiprocessor
oc resources (shared memory and register file)
22222 22222 22222 EE EE A kernel is launched as a grid of thread blocks
LI) (I : . :
Grid Device Blocks and grids can be multi dimensional (x,y,z)

04.10.2017 OpenACC Performance Optimization 19

haft

Mitglied der Helmholtz-Gemeinsc

CUDA Warps

&Y -

Thread
Block

04.10.2017

32 Threads

32 Threads

32 Threads

Warps

>

i

Multiprocessor

#) J0LICH

FORSCHUNGSZENTRUM

A thread block consists of a
groups of warps

A warp is executed
physically in parallel (SIMT)
on a multiprocessor

Currently all NVIDIA GPUs
use a warp size of 32

OpenACC Performance Optimization 20

Mitglied der Helmholtz-Gemeinschaft

Mapping OpenACC to CUDA

The compiler is free to do what it wants

* In general
gang: mapped to blocks (COARSE GRAIN)
worker: mapped to threads (FINE GRAIN)
vector: mapped to threads (FINE SIMD/SIMT)

Exact mapping is compiler dependent

Performance Tips

Use a vector size that is divisible by 32
Block size is num_workers * vector_length

04.10.2017 OpenACC Performance Optimization

#) J0LICH

FORSCHUNGSZENTRUM

21

haft

Mitglied der Helmholtz-Gemeinsc

#) J0LICH

FORSCHUNGSZENTRUM

OpenACC gang, worker, vector clauses

« Gang, worker, vector can be added to a loop clause

« Control the size using the following clauses on the
parallel region

Parallel: num_gangs(n), num_workers(n), vector_length(n)
Kernels: gang(n), worker(n), vector(n)
#fpragma acc parallel loop gang worker

for (int row=0; row<num rows; ++row)

{

#fpragma acc loop vector

for (int col idx=row start; col idx<row end; ++col idx)

m gang, worker, vector appear once per parallel region]

04.10.2017 OpenACC Performance Optimization 22

Mitglied der Helmholtz-Gemeinschaft

#) J0LICH

FORSCHUNGSZENTRUM

Understanding Compiler Output

42,

Accelerator kernel generated
Generating Tesla code
43, #pragma acc loop gang, vector (128) /* blockIdx.x threadIdx.x */

« Compiler is reporting how it is assigning work to the
device

Gang is being mapped to blockldx.x
Vector is being mapped to threadldx.x
Worker is not used

 This application has a thread block size of 128 and
launches as many blocks as necessary

04.10.2017 OpenACC Performance Optimization 23

Mitglied der Helmholtz-Gemeinschaft

#) JULICH

FORSCHUNGSZENTRUM

SpMV

42 :#pragma acc parallel loop

43:for (int row=0; row<num rows; ++row) Want this loop to parallelize

44 :{
45:
46:
47 :
48:
49:
50:
51:

with vector parallelism

yv[lrow] = 0.0;
const int row start = row ptr[row];
const int row end = row ptr[row+l];
for (int col idx=row start; col idx<row end; ++col 1idx)
{
ylrow] += val[col idx] * x[col ptr[col idx] 1;
}

48, Complex loop carried dependence of y—-> prevents parallelization

Loop carried reuse of y-> prevents parallelization

04.10.2017 OpenACC Performance Optimization 24

Mitglied der Helmholtz-Gemeinschaft

#) JULICH

FORSCHUNGSZENTRUM

SpMV

42 :#pragma acc parallel loop

43:for (int row=0; row<num rows; ++row)

44 :{
45:
46:
47 :
48:
49:
50:
51:
52:
53:}

double y tmp = 0.0;
const int row start = row ptr[row];
const int row end = row ptr[row+l];
for (int col idx=row start; col idx<row end; ++col 1idx)
{
y tmp += val[col idx] * x[col ptr[col idx] 1;

— Sum up in temporary
to remove loop
carried dependency

yv[row]

04.10.2017 OpenACC Performance Optimization 25

#) JULICH

FORSCHUNGSZENTRUM

SpMV on K80

pgcc -fast -acc -ta=tesla -Minfo=accel spmv.c -0 spmv
main:

36, Generating
copyin (row ptr[:num rows+l],col ptr[:num vals],val[:num vals],x[:num rows])

Generating copy (y[:num rows])
42, Accelerator kernel generated
Generating Tesla code
43, #pragma acc loop gang /* blockIdx.x */
48, #pragma acc loop vector(128) /* threadIdx.x */
50, Sum reduction generated for y tmp

48, Loop 1s parallelizable

./ spmv

Runtime 0.166006 s.

Mitglied der Helmholtz-Gemeinschaft

04.10.2017 OpenACC Performance Optimization 26

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

% NVIDIA Visual Profiler

File View Window Run Help
SERR=% - (aaalr R I([Ead

% "NewSassioni £

= B [Propetties & = E

[=! Process "spmv" (31507) Select er highlight a single interval to see properties

[=] Thread 2406764480
- Driver AP |
- Profiling Overhz ad
= [0] Tesla Kao
[=| Conlext 1 (CUDA)
LSF MemGpy {HtoD)
L SF MemGpy (DtoH)
[=] Compute
L S 100.0% main_42_gpu
[=] Streams
L Stream 13

[Analysis 52 [Details & Console Tm Settings

Result:

[¢]

iy, Export PDF Report

i Kernel Performance Is Bound By Instruction And Memory Latency
This kernel exhibits low compute throughput and memory bandwidith utilization relative to the peak performance of "Tesla Kgo". These utilization levels indicate
that the performance of the kemnel is most likely limited by the latency of arithmetic or memory operations. Achieved compute throughput and/or memory
bandwidth below 605 of peak typically indicates latency issues.

The first step in analyzing an individual kernel is to et
determine if the performance of the kernel is bounded
by computation, memory bandwidth, or instruction/ 0%
memory latency. The results at right indicats that the
perormance of kemel "main_42_gpu" is most liksly

100%

limited by instruction and memary latency. 0%
i, Perform Latency Analysis .E o) I vemory operatons
E G [controlfow operations
Tha most likely bottieneck to performance for this kernel is = & -Arnhmatnnperatms
instruction and memory katency so you should first pe rform = 40%
instructian and memory latency analysis fo determine how it i Il Memory (L1/Shared)
limiting performance. 30%

i, Perform Compute Analysis

\-J'Q Perform Memory Bandwidth Analysis i

Compute Memory (L1/Sharad) l’

Compute and memory bandwidth are likely not the primary ;l

ied der Helmholtz-Gemeinschaft

04.10.2017 OpenACC Performance Optimization 27

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

% NVIDIA Visual Profiler
File View Window Run Help

SEIMaG - (Ao alFRIELE
% "NewSassioni £ = B [Propetties & = E
Lns 05s 1s 158 25 25s 3s
=l Process "spmv' (31507) Select or highlight a single interval to see properties
[=] Thread 2406764480
- Driver AP| |
- Profiling Overhz ad
= [0] Tesla Kao
[=] Context1 {CUDA)
LSF MemGpy {HtoD) Y
L SF MemGpy (DtoH)
[=] Compute . o
L 5 100.0% main_42_gpu an_... man_.. .. man_. man_. man_.. main_.. ma
=] Streams
L Stream 13
= Analysis 2 Details & Consols Settings X, [EEITT]
ly g
Export PDF Report T =
i Occupancy Is Not Limiting Kernel Performance W
The kemel's block size, register usage, and shared memory usage allow it to fully utilize all warps on the GPU. More...
Variable Achieved Theoretical | Device Limit | Grid Size: | 65535,1,1] (65535 blocks)Block Size: [128,1,1] (128 threads) |
Occupancy Per SM
Active Blocks 16 16 L]
| 0 1 2 3 4 b5 & 7 8 9 10 11 12 13 14 156 16
Instrugtion and memory latency limitthe performance =1 | | Active Warps 63.89 64 64 |
of a kernel when the GPU doss not have snough work 0 4 8 12 16 20 24 28 B2 36 40 44 48 52 56 60 64 =
= to keep busy. The perormance of latency-limited Active Threads o048 2048 m
© kernels can often be improved by increasing 0 256 512 768 1024 1280 1536 1792 2048
5 occupancy. Oecupancy s a measure of how many s e i i i
g warps the kernel has active on the GPU, relative to the & O 15% 805 45% B 8% 90% 100%%
s maximum number of warps supported by the GFU Warps
£ Theorstical cccupancy provides an upper bound
] while achieved occupancy indicates the kemel's Threads/Block. 128 1024 I - = -]
O] actual oceupancy: 0 128 258 384 512 540 768 896 1024
o Warps/Block 4 32 — : 1
e e i i i 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
i e e e e e
E When bath achieved and theorelical sccupancy are high, the Bigak kit 8 - D 1 2 3 4 5 B 7 B 9 10 11 12 13 14 15 18
:‘E stall reasons can provide insight into why &tency is stillan .
- issue for the kernel. For thi karnal. examining stalls may not Registers)
% be usaful until you modify the kernel to address the =] [| HEE|
el
o

04.10.2017 OpenACC Performance Optimization 28

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

% NVIDIA Visual Profiler
Fil

e View Window Run Help

CEHE WS (@R
% "NewSassioni £ = B [Propetties & = e

[=| Process "spmy' (31507) - Select or highlight a single interval to see properties
= Thread 2406764480
~ Driver AP| I |
- Profiling Overhz ad
= [o] TeslaKso
= Conlext 1 (CUDA)
S MemGpy (HtoD)
L SF MemGpy (DioH)

[=] Compute
L 7 100.0% main_42_gpu
] Steams
L Stream 13
i Analysis 82 [Details & Consols: T Settings %... [EIN
[sh) Export PDF Report ey =

GConstant - A constant load is blocked due to a miss in the constants cache.

Instruction Fetch - The next assembly instruction has not yet been fetched.

Texture - The texture sub-system is fully utilized or has too many outstanding requests.
Synchrenizatien - The warp is blocked at a _ syncthreads() call.

Stall Reasons

execution
dependency

Instruction and memory latency limit the performance
of a kernel when the GPU does not have enough work
to kesp busy. The psriormance of latency-limited
kernels can often be improved by increasing
occupancy. Cccupancy is a measure of how many
warps the kernel has active on the GPU, relative 1o the bt
maximum number of warps supported by the GPU -
Theoretical occupancy provides an upper bound Mamory
while achieved occupancy indicates the kermel's dapanpaney
actual sccupaney.

instruction
fatch

textura

| Examine Stall Reasons

Wihen both achieved and theoretical occupancy are high, the synchronization

stall reasons can provide insight into why ltency is still an
Esue for the kernel. For this karnel. examining stalls may not n
be useful until you mod fy the kernel to address the = L’

ied der Helmholtz-Gemeinschaft

04.10.2017 OpenACC Performance Optimization 29

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

‘ NVIDIA Visual Profiler
Fil

e View Window Run Help
= g mg G v [(E 2@
% "NewSassioni £ = B [Properties &2 = e

Lﬂs 05s 1s 15s 2s 25s 3s

[=| Process "spmy' (31507) - Select or highlight a single interval to see properties
= Thread 2406764480
- Driver AP|
- Profiling Overhz ad
= [o] TeslaKso
=] Context 1 (CUDA)
S MemGpy (HtoD)
L SF MemGpy (DioH)
[=] Compute
= ¥ 100.0% main_42_gpu
=l Streams
L Stream 13

i Analysis 82 [Details & Consols: T Settings a.. [EEINE

sh) Export PDF Rieport Resul
: & Low Warp Execution Efficiency

L

weepercentage of active threads in each executed warp. Increasing warp execution efficiency will increase utilization of
the GPU s compute resuurces The kernel's warp execution efficiency of 73.2% is less than 100% due to divergent branches and predicated instructions. If
predicated instructions are not taken into account the warp execution efficiency for these kemels is 100%.

Optimization: Reduce the amount of intra-warp divergence and predication in the kernel. More... | ||
i Function Unit Utilization

GPU compute resources limit the performance of a =1 | Different types of instructions are executed on different function units within each SM. Performance can be limited if a function unit is over-used by the

kernel when those resources are insufficientor poorly instructions executed by the kemel. The following results show that the kemel's performance is not limited by overuse of any function unit

utilized. Computs resources ars ussd mostsfficiently Load/Store - Load and store instructions for local, shared, global, constant, etc. memory.

when all threads in a warp have the same branching Arithmetic - All arithmetic instructions including integer and floating-point add and multiply, logical and binary operations, etc.

and predication behavior. The results at right indicate Gontrol-Flow - Direct and inclirect branches, jumps, and calls.

that a significant fraction of the available compute Texture - Texture operations

performancs is being wasted because branch and
predication behavior is differing for threads within a
warp.

\il, Show Kemel Profile - Instruction Execution |

The kernel profile shows the execution count. inactive = High
threads, and predicated threads for each source and
assambly line of the kernel. Using this information you can
pinpoint portions of your kernel that are making inefficient use
of compute resource due o and

[
Level
L

ied der Helmholtz-Gemeinschaft

04.10.2017 OpenACC Performance Optimization 30

Mitglied der Helmholtz-Gemeinschaft

#) J0LICH

FORSCHUNGSZENTRUM

SpMV on K80

42 :#pragma acc parallel loop

43:for (int row=0; row<num rows; ++row) — gang

44 :{

45: double y tmp = ; vector (128)
46: const int row start = row ptr[row];

47: const int row end = row ptr[row+l];

48: for (int col idx=row start; col idx<row end; ++col idx)

49: {

50: y tmp += val[col 1dx] * x[col ptr[col idx]];

42, Accelerator kernel generated
Generating Tesla code
43, #pragma acc loop gang /* blockIdx.x */
48, #pragma acc loop vector(128) /* threadIdx.x */
50, Sum reduction generated for y tmp

U=. TU.ZUT7 UPTCTTAUU T TTTUTTTTIAr ot UpitninZatiutt I 1

#) JULICH

FORSCHUNGSZENTRU

Providing more information to the compiler

« We know that each row of the used Matrix has only
27 elements

« Using 128 threads for 27 elements does not make
sense

« Let's tell the compiler to use fewer threads for each
row

einschaft

Mitglied der Helmholtz-Gem

04.10.2017 OpenACC Performance Optimization 32

Mitglied der Helmholtz-Gemeinschaft

#) JULICH

FORSCHUNGSZENTRUM

SpMV on K80

42:#pragma acc parallel loop vector length (32)

43:for (int row=0; row<num rows; ++row) gang

44 :{

45: double y tmp = 0.0; vector (32)

46: const int row start = row ptr[row];

4°7: const int row end = row ptr[row+l];

48: for (int col idx=row start; col idx<row end; ++col idx)
49: {

50: y tmp += val[col idx] * x[col ptr[col idx]];

42, Accelerator kernel generated
Generating Tesla code
43, #pragma acc loop gang /* blockIdx.x */
48, #pragma acc loop vector(32) /* threadIlIdx.x */
50, Sum reduction generated for y tmp

U=. TU.ZUT7 I

OpenACC Performance Optimization

#) JULICH

FORSCHUNGSZENTRUM

SpMV on K80

pgcc -fast -acc -ta=tesla -Minfo=accel spmv.c -0 spmv
main:

36, Generating
copyin (row ptr[:num rows+l],col ptr[:num vals],val[:num vals],x[:num rows])

Generating copy (y[:num rows])
42, Accelerator kernel generated
Generating Tesla code
43, #pragma acc loop gang /* blockIdx.x */
48, #pragma acc loop vector (32) /* threadIdx.x */
50, Sum reduction generated for y tmp

48, Loop 1s parallelizable

./ spmv

Runtime 0.119796 s. (was 0.166006 s)

Mitglied der Helmholtz-Gemeinschaft

04.10.2017 OpenACC Performance Optimization 34

Mitglied der Helmholtz-Gemeinschaft

#) J0LICH

FORSCHUNGSZENTRUM

Keeping the code performance portable

* The device_type clause allows device specific
tuning without harming performance portability

 All clauses following a device_type clause only
apply for the given target:

fpragma acc parallel loop device type (NVIDIA)
vector length (32)

for (int row=0; row<num rows; ++row)

{

04.10.2017 OpenACC Performance Optimization 35

haft

Mitglied der Helmholtz-Gemeinsc

#) J0LICH

FORSCHUNGSZENTRUM

Tasks

« Task 0: Coalescing memory accesses (repeat)

« Task 1: Use vector_length to improve the warp
execution efficiency (repeat what was shown)

« Task 2: Use the guided analysis to further improve
the performance.

« Hint: Add worker level parallelism to increase the block size to
128 threads (required to get full occupancy).

04.10.2017 OpenACC Performance Optimization 36

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

% NVIDIA Visual Profiler

File View Window Run Help
CEHBHnE - (2o alF E([E
% "NewSassioni £ = B [Propetties & = E

|
Lﬂs 05s 1s 15s 2s

ol
i

[=| Process "spmy' (31667) - Select or highlight a single interval to see properties
=] Thread 2193973184
- Driver AP|
- Profiling Overhz ad
= [o] TeslaKso
=] Context 1 (CUDA)
S MemGpy (HtoD)
L SF MemGpy (DioH)
[=] Compute
= ¥ 100.0% main_42_gpu
= Streams

- Stream 13

i Analysis 82 [Details & Consols: T Settings

Result:

iy, Export PDF Report

[¢]

i Kernel Performance Is Bound By Instruction And Memory Latency

This kernel exhibits low compute throughput and memory bandwidith utilization relative to the peak performance of "Tesla Kgo". These utilization levels indicate
that the performance of the kemnel is most likely limited by the latency of arithmetic or memory operations. Achieved compute throughput and/or memory
bandwidth below 605 of peak typically indicates latency issues.

The first step in analyzing an individual kernel is to = S

determine if the performance of the kernel is bounded Tor

by computation, memory bandwidth, or instruction/ 0%

memory latency. The results at right indicats that the
= perormance of kems| "main_42_gpu" is most liksly R,
_(CU limited by instruction and memary latency. 0%
S i - =

= € .

2 by, Perform Latency Analysis 1] o I vemory operatons
> E i [controlfow operations
= The most likely bottleneck to performance for this kernel is = bt Abitict .
[0} instruction and mamory latency so you shoukd first perfarm 5 4w I et Gperatidns
S instructian and memory latency analysis to determine how it s Il Memory (Device)
N limiting performance. 0%
=]
o : 20%
-E |, Perform Compute Analysis ‘ =
= 0%
:‘E iy, Perform Memory Banclwidth Analysis I
> Compirte and memory kandwidth are likely not the primary =l Sempta Mamary (BakR} =
©
el
o

04.10.2017 OpenACC Performance Optimization 37

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

% NVIDIA Visual Profiler
File View Window Run Help

ErFrEEC R
% "NewSassioni £ = B [Propetties & = E

|
Lﬂs 05s 1s 15s 2s

[=| Process "spmv" (31667)
[= Thread 2193973184
- Driver AP
- Profiling Overhz ad
= [o] TeslaKso
[=] Context1 {CUDA)
S MemGpy (HtoD)
L SF MemGpy (DioH)
[=] Compute

Select or highlight a single interval to see properties

L 5 100.0% main_42_gpu main... main.. main.
=] Streams
- Stream 13

i Analysis 82 [Details & Consols: T Settings .. [T

iy, Export PDF Report Resul
Z : & GPU Utilization Is Limited By Block Size

[+

size is likely preventing the kernel from fully utilizing the GPU. Device "Tesla K80" can simultaneously
execute up to 16 blocks on each SM. Because each block uses 1 warp to execute the block's 32 threads, the kernel is using enly 16 warps on each SM. Chart
"Warying Block Size" below shows how changing the block size will change the number of warps that can execute on each SM.

Optimization: Increase the number of threads in each block to increase the number of warps that can execute on each SM. More...
|Van‘ab\e Achieved Theoretical | Device Limit | Grid Size: | 65535, 1,1] (85535 blocks)Block Size: [32,1, 1] (32 threads) |
Instrustion and memory latency limitthe perdormance | Occupancy Per SM =
of a kernel when the GPU does not have enough work tive i e ————
= to keep busy. The performance of latency-limited ftivarBiooks in 18 0 1 2 3 4 & & 7 8 9 10 11 12 13 14 15 16
_(:U kernels can often be improved by increasing Active W e E . “ al
3] getupanicy. [Uecupaniay 4 e meaalite of how many e : o 4 1218 200 24 28 '32) 98 40 44 48 52 56 60 B4
g warps the kermel has active on the GPU, relative to the ; — 1
@ maximium himber of warpe euppo ad by the GRU Ronve Thioads 2 AOTE 0 256 512 768 1024 1280 1538 1782 2048
£ Theorstical cccupancy provides an upper bound = — z -
i i indi ' cupanc! 25% 25% 100%
8 while achieved occupancy |nd|ca|ies ﬂ:|e)ferne\ s upancy E oo 15% 0% 5% 807 5% 0% 100%
- actual occupancy. The results at right indicate that
N occupancy can be improved by increasing the Warps
o number of threads in each block |
< - Threads/Block 2 1024 - — - — -
€ =3 B 0 128 256 384 512 840 768 896 1024
o) idy, Examine Stall Reasens Warss/Bloch : o L]
:E When both achisved and theoratizal oecupancy are high. the a) ' g 2 4 8 8 10 12 M 16 18 20 22 2 26 28 30 32
% stall rsasons can provide insiaht into why Etancy & stil an =l] | e e 4 18 S S T T —
el
o

04.10.2017 OpenACC Performance Optimization 38

Mitglied der Helmholtz-Gemeinschaft

#) JULICH

FORSCHUNGSZENTRUM

SpMV

42 :#pragma acc parallel loop device type (NVIDIA) gang worker
vector length (32)

‘__=====:!gang, worker (4)
43:for (int row=0; row<num rows; ++row)

44 :{
45:
46:
47 :
48:
49:

vector (32)

double y tmp = 0.0;

const int row start = row ptr[row];
const int row end = row ptr[row+l];
for (int col idx=row start; col idx<row end; ++col 1idx)

{

42,

Accelerator kernel generated
Generating Tesla code
43, #pragma acc loop gang, worker(4) /* blockIdx.x threadIdx.y */
48, #pragma acc loop vector(32) /* threadIdx.x */
50, Sum reduction generated for y tmp

7

04.10.2017 OpenACC Performance Optimization 39

#) J0LICH

FORSCHUNGSZENTRUM

Understanding Compiler Output (recap)

haft

Mitglied der Helmholtz-Gemeinsc

42, Accelerator kernel generated
Generating Tesla code
43, #pragma acc loop gang, worker(4) /* blockIdx.x threadIdx.y */
48, #pragma acc loop vector(32) /* threadIdx.x */
50, Sum reduction generated for y tmp

« Compiler is reporting how it is assigning work to the
device

Gang is being mapped to blockldx.x
Worker is being mapped to threadldx.y
Vector is being mapped to threadldx.x

 This application has a thread block size of 4x32 and
launches as many blocks as necessary

04.10.2017 OpenACC Performance Optimization 40

#) JULICH

FORSCHUNGSZENTRUM

SpMV on K80

pgcc -fast -acc -ta=tesla -Minfo=accel spmv.c -0 spmv
main:

36, Generating
copyin (row ptr[:num rows+l],col ptr[:num vals],val[:num vals],x[:num rows])

Generating copy (y[:num rows])
42, Accelerator kernel generated
Generating Tesla code
43, #pragma acc loop gang, worker (4) /* blockIdx.x threadIdx.y */
48, #pragma acc loop vector(32) /* threadIdx.x */
50, Sum reduction generated for y tmp

48, Loop 1is parallelizable

./ spmv

Runtime 0.047039 s. (was 0.119796 s and 0.166006 s)

Mitglied der Helmholtz-Gemeinschaft

04.10.2017 OpenACC Performance Optimization 41

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

% NVIDIA Visual Profiler 3

File View Window Run Help

i E S - H e
& "NewSassion1 52 = B [Properties &2 = 5
\‘ns 0255 055 0755 15 1255
=] Process "spmv" (31791) Select or highlight a single interval to see properties
=] Thread 2691461056
= Driver AP| ll

- Profiling Overhead
= [0] Tesla Kao

[=] Context 1 {CUDA)
L 5F MemGpy (HtoD)
L SF MemGpy (DtoH)
[=] Compute

= 5 100.0% main_42_gpu

[=] Streams

- Stream 13

5 Analysis 82 [Detalls & Consale

Settings b BN

Export PDF Report & osui

1x

i Kernel Performance Is Bound By Instruction And Memory Latency
This kernel exhibits low compute throughput and memory bandwidkth utilization relative to the peak parformance of "Tesla K80". These utilization levels indicate
that the performance of the kemnel is most likely limited by the latency of arithmetic or memery operations. Achieved compute throughput and‘or memory
bandwidth below 605 of peak typically indicates latency issues.

The first step in analyzing an individual kernel is to =
determine if the performance of the kernelis bounded
by computation, memory bandwidth, or instruction/ 0%

memory latency. The results at right indicats that the
perormance of kemesl "main_42_gpu" is most liksly
limited by instruction and memary latency.

I Memory operations
I Controkfow operations
I Arithmetic operations
I Memory (L1/Shared)

i, Perform Latency Analysis

Tha most likely bottieneck to performance for this kernel is
instruction and memory latency so you shoukd first pe rfarm
instruction and memory kiency analysis fo determine how it is
limiting performance. 30%

Utilization

iy, Perform Compute Analysis

\-_l_la Perform Memory Bandwidth Analysis ‘

Compute and memary bandwidth are likely not the primary =l Gemputa Memary (L1 Sharad) Ra|

ied der Helmholtz-Gemeinschaft

04.10.2017 OpenACC Performance Optimization 42

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

% NVIDIA Visual Profiler (Fars

File View Window Run Help |

NEBRDGS% - R & FR(|EEE

& "NewSassion1 52 = B I Properties &2 = 5
\‘ns 025s 055 0.75s 18 125

[=| Process "spmv" (31791)
[= Thread 2691461056
~ Driver AP
- Profiling Overhead
=] [0] Tesla K80
[=] Context 1 {CUDA)
¥ MemGpy (HioD)
L SF MemGpy (DioH)

Select or highlight a single interval to see properties

=1 Compute I —
7 Y00.0% main_42_gp I —
=] Streams
- Stean1s I
[Analysis £2 Detall: & Console T Saitings . BNl
Export PDF Report & osui =
i Occupancy Is Not Limiting Kernel Performance I
The kemel's block size, register usage, and shared memory usage allow it to fully utilize all warps on the GPU. More...
Variable Achieved Theoretical | Device Limit | Grid Size: [65535,1,1] (65535 blocks)Block Size: [32,4,1] (128 threads) |
Occupancy Per SM
Active Blocks 16 16 m
0 1 2 3 4 5 & 7 8 g 10 11 12 13 14 156 16
Instrugtion and memory latency limitthe performance =1 | | Active Warps 63.56 64 54 S
of a kernel when the GPU does not have enough work 0 4 8 12 168 20 24 28 32 36 40 44 48 52 56 60 B4 =
= 1o keep busy, The perormancs of latency-limited Active Thraads e 2045 e ———
© kernels can often be improved by increasing] 256 512 768 1022 1280 1536 1792 2048
5 oecupancy, Oecupancy s a measure of how many SR 100% 100% 1
g warps the kernel has active on the GPU, relative to the 0% 15% 0% 458% B0 78% 90% 100%
s maximum number of warps supported by the GPU. Warps
£ Theorstical cccupancy provides an upper bound
] while achieved occupancy indicates the kemel's Threads/Block 128 1024 I]
(-? actual occupancy. 0 128 266 384 512 6840 768 896 1024
B = = Warps/Block 4 32 = = 1
e i, Examine Stall A easons 0 2 4 B B 10 12 14 16 18 20 22 24 26 28 30 32
i e S T S |
E When both achieved and theorelical occupancy are high, the Bicok Lirnit L 8 0 1 2 3 4 5 B 7 8 9 10 11 12 13 14 15 18
:‘E stall reasons can provide insight into why atency is still an 3
- isue for the kernel. For this karnel, examining stalls may not Registers
% be useful until you mod fy the kernel to address the kA | | L!
el
o

04.10.2017 OpenACC Performance Optimization 43

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

% NVIDIA Visual Profiler

File View Window Run Help
ME% 29 @lfF R (@il

& "NewSassion1 52 = B [Properties & = o
0s 0255 055 0755 15 1255
[=] Process "spmv’ (31791) Select or highlight a single interval to see properties
=] Thread 2691461056
~ Driver AP| | | |

- Profiling Overhead
= [0] Tesla Kao
[=] Context 1 (CUDA)
L 5F MemGpy (HtoD)
L SF MemGpy (DtoH)

= Compute I
7 1000% main_42_gpu]
=] Streams
- Steam 19 I —
[Analysis 32 [Detalls & Console Sattings .. =R
Result:
Export PDF Report Instruction Fetch - |he next assembly instruction has not yet been tetched. Z‘

Texture - The texture sub-system is fully utilized or has too many outstanding requests.
Synchronization - The warp is blocked at a __syncthreads(call.

Stall Reasons

execution
dapendency

instruction i
fatch

nat

Instruction and memory latency limit the performance
of a kernel when the GPU does not have encugh work
to keep busy. The perlormance of latency-limited sokclad
kernels can often be improved by increasing memary
occupancy. Cecupancy is a measure of how many throttle
warps the kernel has active on the GPU, relative to the TR,
maximum number of warps supported by the GPU.
Theorstical cccupancy provides an upper bound
while achieved occupancy indicates the kermel's memory
actual oceupaney. duparding

synchronization
texture

[, Examine Stall Reasons

Wihen both achieved and theoretical occupancy are high, the
stall reasons can provide insight into why atancy is stillan
issue for the kernel. For this kernel, examining stalls may not ‘ i Oceupancy Is Not Limiting Kernel Perormance

be useful until you mod fy the kernel to address the ;l ﬂ

ied der Helmholtz-Gemeinschaft

04.10.2017 OpenACC Performance Optimization 44

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

‘ NVIDIA Visual Profiler

File View Window Run Help
CHEE B &
% "NewSassioni £ = B [Propetties & = A

|
Lﬂs 025s 055 0755 1s 1255

o

| [Process "spmv" (31791) -Select or highlight a single interval to see properties
= Thread 2691461056
- Driver AP|
- Profiling Overhz ad
[[0] Tesla Kao
[=] Context 1 (CUDA)
57 MemGpy (HioD)
© 7 MemGpy (DioH)
[=] Compute
= §F 100.0% main_d2_gpu
[Streams

- Stream 13

Settings .. [EET
Result:

il Analysis 82 [Details & Consols

Export PDF Report

L+

& Low Warp Execution Efficiency

Warp execution efficiency is the average percentage of active threadls in each executed warp. Increasing warp execution efficiency will increase utilization of
the GPU's compute resources. The kernel's warp execution efficiency of 66% is less than 100% due to divergent branches and predicated instructions. If
predicated instructions are not taken into account the warp execution efficiency for these kemels is 89%.

Optimization: Reduce the amount of intra-warp divergence and predication in the kemnel. More... | L]
2 i Function Unit Utilization
GPU compute resources limit the performance of a =1 | Different types of instructions are executed on different function units within each SM. Performance can be limited if a function unit is over-used by the
kernel when those resources are insufficient or poorly instructions executed by the keral. The following results show that the kemel's perfarmance is not limited by overuse of any function unit
utilized. Compute resources ars ussd most sfficiently Load/Store - Load and store instructions for local, shared, global, constant, etc. memory.
when all threads in a warp have the same branching Arithmetic - All arithmetic instructions including integer and floating-point add and multiply, logical and binary operations, etc.
and predication behavior, The results at right indicate Gontrol-Flow - Direct and inclirect branches, jumps, and calls.
that a significant fraction of the available compute Texture - Texture operations

performancs is bsing wasted because branch and
predication behavior is differing for threads within a

ult, Show Kemel Profile - Instruction Execution ;

The kernel profile shows the execution count. inactive = High
threads and predicated threads for each source and
assambly line of the kerns|. Using this information you can

pinpoint portions of your kerne! that are making inefficient uss i M
of compute resource due o and - =

ied der Helmholtz-Gemeinschaft

04.10.2017 OpenACC Performance Optimization 45

#) JULICH

FORSCHUNGSZENTRU

Conclusions

« The NVIDIA Visual Profiler can be used to identify
performance bottlenecks in OpenACC Kernels

« Coalescing memory accesses is important for
performance

« Using loop clauses allows to provide runtime
information (approximate length of matrix rows) to
the compiler for better performance.

einschaft

Mitglied der Helmholtz-Gem

04.10.2017 OpenACC Performance Optimization 46

